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The PAM in the Euclidean Space

The parabolic Anderson model (PAM) on R𝑑:{
𝜕𝑡𝑢(𝑡, 𝑥) = Δ𝑢(𝑡, 𝑥) + 𝜉 (𝑥) · 𝑢(𝑡, 𝑥),
𝑢(0, ·) ≡ 1.

▶ Here 𝜉 = {𝜉 (𝑥) : 𝑥 ∈ R𝑑} is a mean-zero, stationary Gaussian
field with sufficiently regular sample functions.

▶ The covariance function

𝑄(𝑥) ≜ E[𝜉 (0)𝜉 (𝑥)]

is twice continuously differentiable at the origin.



The PAM in the Euclidean Space

Feynman-Kac representation:

𝑢(𝑡, 𝑥) = E𝑥
[
𝑒
∫ 𝑡
0 𝜉 (𝑊𝑠 )𝑑𝑠

]
,

where𝑊 is an BM on R𝑑 independent of 𝜉.

Basic questions:
▶ What is the exact long time growth of 𝑢(𝑡, 𝑥) as 𝑡 → ∞?
▶ What is the fluctuation asymptotics?
▶ Moment vs almost sure asymptoics.



The PAM in the Euclidean Space

Define
𝜎2 ≜ Var[𝜉 (0)], 𝜒 =

1
√

2
Tr
√︁
−Hess𝑄(0).

▶ Moment asymptotics (Gärtner-König, AAP 2000):

⟨𝑢(𝑡, 𝑥) 𝑝⟩ = exp
(
𝜎2𝑝2

2
𝑡2 − 𝜒𝑝3/2𝑡3/2(1 + 𝑜(1))

)
, ∀𝑝 ⩾ 1.

▶ Almost sure asymptotics (Gärtner-König-Molchanov, PTRF
2000):

𝑢(𝑡, 𝑥) = exp
(√︁

2𝑑𝜎2𝑡 (log 𝑡)1/2

−(2𝑑/𝜎2)1/4𝜒𝑡 (log 𝑡)1/4(1 + 𝑜(1))
)
.



Basic questions

If one changes the underlying geometry, would it lead to different
asymptotic behaviours of the PAM?

Some aspects of the geometry of non-negatively curved spaces are
"not-so-much" different from R𝑑:
▶ Volume growth, heat kernel decay, behaviour of BM etc.

We work with the geometry of negative curvature:
▶ The standard hyperbolic space H𝑑 .



Some related works in non-Euclidean spaces

▶ Compact Riemannian manifolds (Chen-Ouyang-Vickery, 2023).
▶ Trees (Hollander-König-Santos, 2020; Hollander-Wang, 2023).
▶ Heisenberg groups (Baudoin-Ouyang-Tindel-Wang, 2023)
▶ Metric measure spaces

(Baudoin-Chen-Huang-Ouyang-Tindel-Wang, 2024).
▶ Singular case on compact Rumanian surfaces

(Dahlqvist-Diehl-Driver, 2017).



The hyperbolic plane

The upper-half plane: H2 ≜ {(𝑥, 𝑦) : 𝑦 > 0}.

Metric tensor:
𝑑𝑠2 =

𝑑𝑥2 + 𝑑𝑦2

𝑦2

▶ Complete, simply-connected Riemannian manifold of curvature
−1.

Geodesics:
▶ Semi-circles with both ends perpendicular to the 𝑥-axis.

Hyperbolic distance:

𝑑 (𝑧1, 𝑧2) = 2arcsinh
|𝑧1 − 𝑧2 |eu
2√𝑦1𝑦2

, 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖).



The hyperbolic space

Hyperbolic Laplacian:

Δ = 𝑦2
(
𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

)
.

Volume form:
vol =

𝑑𝑥𝑑𝑦

𝑦2 .

Group of orientation-preserving isometries:

PSL2(R) = SL2(R)/{±𝐼},

where
SL2(R) = {𝐴 ∈ Mat2(R) : det 𝐴 = 1}

acts on H2 via Möbius transform.



Some global properties

Exponential volume growth:

vol(𝐵𝑅) = 2𝜋 (cosh 𝑅 − 1) ∝ 𝑒𝑅 .

Bottom spectrum of Laplacian:

inf Spec(−Δ) = 1
4
.

Exponential decay of heat kernel (Davies-Mandouvalos, 1998):

𝑝(𝑡, 𝑥, 𝑦) ≍ 1
𝑡

exp
(
−1

4
𝑡 − 𝑑 (𝑥, 𝑦)2

4𝑡
− 1

2
𝑑 (𝑥, 𝑦)

)
1 + 𝑑 (𝑥, 𝑦)√︁

1 + 𝑑 (𝑥, 𝑦) + 𝑡



Long time behaviour of BM

The hyperbolic Brownian motion𝑊𝑡 : Markov process generated by Δ.

▶ Transience:

𝑑 (𝑜,𝑊𝑡 )
𝑡

→ 1 a.s. (𝑑 (𝑜,𝑊𝑡 ) → ∞).

▶ Central limit theorem (Babillot, 1994):

𝑑 (𝑜,𝑊𝑡 ) − 𝑡√
2𝑡

𝑑−→ 𝑁 (0, 1).



Sullivan’s theorem

With probability one,𝑊𝑡 converges to a definite (random) point on the
boundary at infinity as 𝑡 → ∞.
▶ The angular component of𝑊𝑡 converges a.s.
▶ On the Poincaré disk,𝑊𝑡 converges a.s. to a point on 𝑆1.
▶ Bounded, non-constant harmonic functions:

H2 ∋ 𝑥 ↦→ E𝑥 [𝜑(𝑊∞)], 𝜑 ∈ C(𝑆1).



PAM in the hyperbolic space

Let 𝑀 = H𝑑 (𝑑-dimensional, complete, simply-connected R-manifold
with curvature −1).

Consider the PAM on 𝑀:{
𝜕𝑡𝑢(𝑡, 𝑥) = Δ𝑢(𝑡, 𝑥) + 𝜉 (𝑥) · 𝑢(𝑡, 𝑥),
𝑢(0, ·) ≡ 1.

Gaussian field 𝜉:
▶ Mean-zero, invariant under isometries, sufficiently regular

covariance function.
Feynman-Kac:

𝑢(𝑡, 𝑥) = E𝑥
[
𝑒
∫ 𝑡
0 𝜉 (𝑊𝑠 )𝑑𝑠] ,

where𝑊 is the hyperbolic BM starting from 𝑥.



Examples of Gaussian field

Let Ξ be the white noise on the isometry group 𝐺 w.r.t. the Haar
measure 𝑑𝑔.
▶ {Ξ(𝐴) : 𝐴 ∈ B(𝐺), |𝐴|𝐺 < ∞} is a Gaussian family with

mean-zero and covariance structure

E[Ξ(𝐴)Ξ(𝐵)] = |𝐴 ∩ 𝐵|𝐺 .

Let 𝑓 : 𝑀 → R be a smooth function with suitable decay at infinity.

Define
𝜉 (𝑥) ≜

∫
𝐺

𝑓 (𝑔−1 · 𝑥)Ξ(𝑑𝑔), 𝑥 ∈ 𝑀.

Covariance function:

𝑄(𝑥, 𝑦) =
∫
𝐺

𝑓 (𝑔 · 𝑥) 𝑓 (𝑔 · 𝑦)𝑑𝑔 = 𝑄(𝑑 (𝑥, 𝑦)).



Moment asymptotics

Define

𝐻 (𝑡) ≜ 1
2
𝜎2𝑡2, 𝛽(𝑡) ≜ 𝑡3/2. (𝜎2 ≜ Var[𝜉 (𝑥)])

Theorem (Xu-G., 2024+)
For any 𝑝 ⩾ 1, one has

lim
𝑡→∞

1
𝛽(𝑝𝑡) log

(
𝑒−𝐻 (𝑝𝑡 ) ⟨𝑢(𝑡, 𝑥) 𝑝⟩

)
= −𝜒eu = −

√︂
𝑄′′(0)

2
𝑑.



The fluctuation exponent 𝜒eu

Fix a base point 𝑜 ∈ M.
▶ Geodesic polar coordinates: 𝑥 = (𝜌, 𝜎) ∈ 𝑀 .

▶ 𝜌 = 𝑑 (𝑥, 𝑜) ∈ [0,∞).
▶ 𝜎 ∈ 𝑆𝑇𝑜𝑀: angular component of 𝑥 w.t.r. 𝑜.

Define the functional 𝐽 : P𝑐 (𝑀) → R by

𝐽 (𝜇) ≜ −1
4
𝑄′′(0)

∫
𝑀×𝑀

𝑑eu(𝑧1, 𝑧2)2𝜇(𝑑𝑧1)𝜇(𝑑𝑧2),

where

𝑑eu(𝑧1, 𝑧2) ≜ 𝜌2
1 + 𝜌

2
2 − 2𝜌1𝜌2⟨𝜎1, 𝜎2⟩𝑇𝑜𝑀 , 𝑧𝑖 = (𝜌𝑖 , 𝜎𝑖).



The fluctuation exponent 𝜒eu

Define the Donsker-Varadhan functional:

Seu(𝜈) =
{∫
𝑇𝑜𝑀

|∇𝜙 |2𝑑𝑥, 𝜈 ≪ 𝑑𝑥, 𝑑𝜈
𝑑𝑥

= 𝜙2 with 𝜙 ∈ 𝐻1(𝑇𝑜𝑀);
+∞, otherwise.

▶ This is essentially the Dirichlet form associated with the
Euclidean BM (BM on 𝑇𝑜𝑀).

The fluctuation asymptotics:

lim
𝑡→∞

1
𝛽(𝑝𝑡) log

(
𝑒−𝐻 (𝑝𝑡 ) ⟨𝑢(𝑡, 𝑥) 𝑝⟩

)
= − inf

{
𝐽 (𝜇) + Seu(exp−1

𝑜 𝜇) : 𝜇 ∈ P𝑐 (𝑀)
}

=: −𝜒eu = −𝑑
√︁
𝑄′′(0)/2 (Gärtner-König, 2000)



Almost sure asymptotics

Theorem (Wang-Xu-G., 2024+)
Suppose additionally that the covariance function is compactly
supported. There exist deterministic constants 𝐶, 𝑐 > 0 such that with
probability one,

lim
𝑡→∞

1
𝑡5/3

log 𝑢(𝑡, 𝑜) ⩽ 𝐶, lim
𝑡→∞

1
𝑡5/3

log 𝑢(𝑡, 𝑜) ⩾ 𝑐.

Euclidean case:

𝑢(𝑡, 𝑜) = 𝑒
√

2𝑑𝜎2 ·𝑡
√

log 𝑡 (1+𝑜(1) ) .



Almost sure asymptotics

Growth of sample functions for the Gaussian field 𝜉:

lim
𝑅→∞

max
𝑥∈𝐵(𝑜,𝑅)

𝜉 (𝑥)√︁
2𝜎2(𝑑 − 1)𝑅

= 1 a.s.

▶ The hyperbolic BM 𝑑 (𝑜,𝑊𝑡 ) ≈ (𝑑 − 1)𝑡 +𝑂 (
√
𝑡).

▶ On the ball of radius 𝑂 (𝑡),

max 𝜉 ≈ 𝑂 (
√
𝑡).

▶ Feynman-Kac 𝑢(𝑡, 𝑜) = E𝑜 [𝑒
∫ 𝑡
0 𝜉 (𝑊𝑠 )𝑑𝑠]:

𝑢(𝑡, 𝑜) ≲ 𝑒𝑂 (𝑡3/2 ) .

▶ This intuition is NOT true!



In working progress

Trying to understand which of the following two scenarios is correct:

1. No exact limit:

lim
𝑡→∞

1
𝑡5/3

log 𝑢(𝑡, 𝑜) ≠ lim
𝑡→∞

1
𝑡5/3

log 𝑢(𝑡, 𝑜).

2. Exact first order asymptotics:

lim
𝑡→∞

1
𝑡5/3

log 𝑢(𝑡, 𝑜) = 𝐶.

▶ Fluctuation asymptotics (we believe: in the scale 𝑡4/3)?



Idea of proof: moment asymptotics

Main philosophy of Gärtner-König:

▶ Rescaling argument + Feynman-Kac =⇒

𝑒−𝐻 (𝑡 )𝑢(𝑡, 𝑜) = E𝑜
[
𝑒
∫ 𝛽 (𝑡 )
0 𝜉𝑡 (𝑊 𝑡

𝑠 )𝑑𝑠
]
,

▶ 𝛽(𝑡) = 𝑡3/2.
▶ 𝜉𝑡 : suitably rescaled version of 𝜉.
▶ 𝑊 𝑡 is a hyperbolic BM starting at 𝑜.
▶ Both 𝜉𝑡 (·) and𝑊 𝑡

· are considered defined under curvature
𝜅𝑡 ≡ 𝑡−1/2.



Idea of proof: moment asymptotics

After taking expectation w.r.t. 𝜉:

𝑒−𝐻 (𝑡 ) ⟨𝑢(𝑡, 𝑜)⟩ = E𝑜
[
𝑒
−𝛽 (𝑡 )𝐽𝑡 (𝐿𝑡𝛽 (𝑡 ) )

]
.

Here

𝐿𝑡𝑠 (𝑑𝑥) ≜
1
𝑠

∫ 𝑠

0
1{𝑊 𝑡

𝑟 ∈𝑑𝑥}𝑑𝑟, 𝑠 > 0;

𝐽𝑡 (𝜇) ≜ − 1
𝛽(𝑡) log⟨𝑒𝛽 (𝑡 ) (𝜇, 𝜉𝑡 )⟩, 𝜇 ∈ P𝑐 (𝑀).

Key points:
▶ 𝐽𝑡 → 𝐽.
▶ {𝐿𝑡

𝛽 (𝑡 ) : 𝑡 > 0} satisfies an LDP with rate function Seu.



Idea of proof: moment asymptotics

Varadhan’s lemma =⇒

lim
𝑡→∞

1
𝛽(𝑡) log

(
𝑒−𝐻 (𝑡 ) ⟨𝑢(𝑡, 𝑜)⟩

)
= − inf

𝜇∈P𝑐 (𝑀 )
{𝐽 (𝜇) + Seu(𝜇)} = −𝜒eu.

Main difficulty:

▶ One cannot directly prove such an LDP on the non-compact
manifold 𝑀 .

▶ Curvature (𝜅𝑡 ≡ 𝑡−1/2) is changing simultaneously as the time
scale of BM (𝛽(𝑡) = 𝑡3/2) goes to infinity.



Idea of proof: Almost sure asymptotics

Why is the effective localisation range is of radius 𝐾 (𝑡) = 𝑂 (𝑡4/3)?

Maximum of 𝜉 on 𝐵(𝑜, 𝐾 (𝑡)) is

ℎ𝐾 (𝑡 ) ≜
√︁

2𝜎2(𝑑 − 1)𝐾 (𝑡) (+𝑜(ℎ𝐾 (𝑡 ) )).

Localisation:
▶ Before exiting 𝐵(𝑜, 𝐾 (𝑡)), it takes 𝛿(𝑡) amount of time to a peak

"island" 𝐼 of 𝜉 and stays there over [𝛿(𝑡), 𝑡].



Idea of proof: Almost sure asymptotics

𝑢(𝑡, 𝑜) ⩾E𝑜
[
𝑒
∫ 𝛿 (𝑡 )
0 𝜉 (𝑊𝑠 )𝑑𝑠 · 𝑒

∫ 𝑡
𝛿 (𝑡 ) 𝜉 (𝑊𝑠 )𝑑𝑠

;𝑊𝛿 (𝑡 ) ∈ 𝐼,𝑊 | [ 𝛿 (𝑡 ) ,𝑡 ] ⊆ 𝐼,𝑊 | [0,𝑡 ] ⊆ 𝐵(𝑜, 𝐾 (𝑡))
]

≳ 𝑒−𝐶𝛿 (𝑡 )
√
𝐾 (𝑡 ) · 𝑒 (𝑡−𝛿 (𝑡 ) )ℎ𝐾 (𝑡 ) · 𝑒−

𝐾 (𝑡 )2
4𝛿 (𝑡 ) .

Choose 𝐾 (𝑡) as large as possible under the constraint:

(𝑡 − 𝛿(𝑡))ℎ𝐾 (𝑡 ) >
𝐾 (𝑡)2

4𝛿(𝑡) + 𝐶𝛿(𝑡)
√︁
𝐾 (𝑡).

This leads us to choose 𝛿(𝑡) ∝ 𝑡 and 𝐾 (𝑡) = 𝑂 (𝑡4/3), resulting in

𝑢(𝑡, 𝑜) ⩾ 𝑒𝑐𝑡5/3+𝑜 (𝑡5/3 ) .



The End

Thank you for your attention!


